Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sci Total Environ ; 871: 162069, 2023 May 01.
Article in English | MEDLINE | ID: covidwho-2235328

ABSTRACT

During the COVID-19 pandemic, wastewater-based surveillance has been used alongside diagnostic testing to monitor infection rates. With the decline in cases reported to public health departments due to at-home testing, wastewater data may serve as the primary input for epidemiological models, but training these models is not straightforward. We explored factors affecting noise and bias in the ratio between wastewater and case data collected in 26 sewersheds in California from October 2020 to March 2022. The strength of the relationship between wastewater and case data appeared dependent on sampling frequency and population size, but was not increased by wastewater normalization to flow rate or case count normalization to testing rates. Additionally, the lead and lag times between wastewater and case data varied over time and space, and the ratio of log-transformed individual cases to wastewater concentrations changed over time. This ratio decreased between the Epsilon/Alpha and Delta variant surges of COVID-19 and increased during the Omicron BA.1 variant surge, and was also related to the diagnostic testing rate. Based on this analysis, we present a framework of scenarios describing the dynamics of the case to wastewater ratio to aid in data handling decisions for ongoing modeling efforts.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Wastewater , Pandemics
2.
PLOS Water ; 1(2), 2022.
Article in English | ProQuest Central | ID: covidwho-2197189

ABSTRACT

Wastewater-based testing for SARS-CoV-2 is a novel tool for public health monitoring, but additional laboratory capacity is needed to provide routine monitoring at all locations where it has the potential to be useful. Few standardization practices for SARS-CoV-2 wastewater analysis currently exist, and quality assurance/quality control procedures may vary across laboratories. Alongside counterparts at many academic institutions, we built out a laboratory for routine monitoring of wastewater at the University of California, Berkeley. Here, we detail our group's establishment of a wastewater testing laboratory including standard operating procedures, laboratory buildout and workflow, and a quality assurance plan. We present a complete data analysis pipeline and quality scoring framework and discuss the data reporting process. We hope that this information will aid others at research institutions, public health departments, and wastewater agencies in developing programs to support wastewater monitoring for public health decision-making.

3.
PLoS Pathog ; 18(10): e1010636, 2022 10.
Article in English | MEDLINE | ID: covidwho-2079775

ABSTRACT

Wastewater-based epidemiology (WBE) is an effective way of tracking the appearance and spread of SARS-COV-2 lineages through communities. Beginning in early 2021, we implemented a targeted approach to amplify and sequence the receptor binding domain (RBD) of SARS-COV-2 to characterize viral lineages present in sewersheds. Over the course of 2021, we reproducibly detected multiple SARS-COV-2 RBD lineages that have never been observed in patient samples in 9 sewersheds located in 3 states in the USA. These cryptic lineages contained between 4 to 24 amino acid substitutions in the RBD and were observed intermittently in the sewersheds in which they were found for as long as 14 months. Many of the amino acid substitutions in these lineages occurred at residues also mutated in the Omicron variant of concern (VOC), often with the same substitutions. One of the sewersheds contained a lineage that appeared to be derived from the Alpha VOC, but the majority of the lineages appeared to be derived from pre-VOC SARS-COV-2 lineages. Specifically, several of the cryptic lineages from New York City appeared to be derived from a common ancestor that most likely diverged in early 2020. While the source of these cryptic lineages has not been resolved, it seems increasingly likely that they were derived from long-term patient infections or animal reservoirs. Our findings demonstrate that SARS-COV-2 genetic diversity is greater than what is commonly observed through routine SARS-CoV-2 surveillance. Wastewater sampling may more fully capture SARS-CoV-2 genetic diversity than patient sampling and could reveal new VOCs before they emerge in the wider human population.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , SARS-CoV-2/genetics , Wastewater , COVID-19/epidemiology , Genetic Variation
4.
Environ Sci (Camb) ; 8(4): 757-770, 2022 Mar 31.
Article in English | MEDLINE | ID: covidwho-1721604

ABSTRACT

Wastewater-based epidemiology has gained attention throughout the world for detection of SARS-CoV-2 RNA in wastewater to supplement clinical testing. Raw wastewater consists of small particles, or solids, suspended in liquid. Methods have been developed to measure SARS-CoV-2 RNA in the liquid and the solid fraction of wastewater, with some studies reporting higher concentrations in the solid fraction. To investigate this relationship further, six laboratories collaborated to conduct a study across five publicly owned treatment works (POTWs) where both primary settled solids obtained from primary clarifiers and raw wastewater influent samples were collected and quantified for SARS-CoV-2 RNA. Settled solids and influent samples were processed by participating laboratories using their respective methods and retrospectively paired based on date of collection. SARS-CoV-2 RNA concentrations, on a mass equivalent basis, were higher in settled solids than in influent by approximately three orders of magnitude. Concentrations in matched settled solids and influent were positively and significantly correlated at all five POTWs. RNA concentrations in both settled solids and influent were correlated to COVID-19 incidence rates in the sewersheds and thus representative of disease occurrence; the settled solids methods appeared to produce a comparable relationship between SARS-CoV-2 RNA concentration measurements and incidence rates across all POTWs. Settled solids and influent methods showed comparable sensitivity, N gene detection frequency, and calculated empirical incidence rate lower limits. Analysis of settled solids for SARS-CoV-2 RNA has the advantage of using less sample volume to achieve similar sensitivity to influent methods.

5.
Environ Sci (Camb) ; 92021.
Article in English | MEDLINE | ID: covidwho-1373455

ABSTRACT

SARS-CoV-2 RNA detection in wastewater is being rapidly developed and adopted as a public health monitoring tool worldwide. With wastewater surveillance programs being implemented across many different scales and by many different stakeholders, it is critical that data collected and shared are accompanied by an appropriate minimal amount of metainformation to enable meaningful interpretation and use of this new information source and intercomparison across datasets. While some databases are being developed for specific surveillance programs locally, regionally, nationally, and internationally, common globally-adopted data standards have not yet been established within the research community. Establishing such standards will require national and international consensus on what metainformation should accompany SARS-CoV-2 wastewater measurements. To establish a recommendation on minimum information to accompany reporting of SARS-CoV-2 occurrence in wastewater for the research community, the United States National Science Foundation (NSF) Research Coordination Network on Wastewater Surveillance for SARS-CoV-2 hosted a workshop in February 2021 with participants from academia, government agencies, private companies, wastewater utilities, public health laboratories, and research institutes. This report presents the primary two outcomes of the workshop: (i) a recommendation on the set of minimum meta-information that is needed to confidently interpret wastewater SARS-CoV-2 data, and (ii) insights from workshop discussions on how to improve standardization of data reporting.

6.
Environ Sci Technol ; 55(6): 3514-3519, 2021 03 16.
Article in English | MEDLINE | ID: covidwho-1114678

ABSTRACT

Wastewater-based epidemiology is an emerging tool for tracking the spread of SARS-CoV-2 through populations. However, many factors influence recovery and quantification of SARS-CoV-2 from wastewater, complicating data interpretation. Specifically, these factors may differentially affect the measured virus concentration, depending on the laboratory methods used to perform the test. Many laboratories add a proxy virus to wastewater samples to determine losses associated with concentration and extraction of viral RNA. While measuring recovery of a proxy virus is an important process control, in this piece, we describe the caveats and limitations to the interpretation of this control, including that it typically does not account for losses during RNA extraction. We recommend reporting the directly measured concentration data alongside the measured recovery efficiency, rather than attempting to correct the concentration for recovery efficiency. Even though the ability to directly compare SARS-CoV-2 concentrations from different sampling locations determined using different methods is limited, concentration data (uncorrected for recovery) can be useful for public health response.


Subject(s)
COVID-19 , Viruses , Humans , RNA, Viral , SARS-CoV-2 , Wastewater
7.
mBio ; 12(1)2021 01 19.
Article in English | MEDLINE | ID: covidwho-1066817

ABSTRACT

Viral genome sequencing has guided our understanding of the spread and extent of genetic diversity of SARS-CoV-2 during the COVID-19 pandemic. SARS-CoV-2 viral genomes are usually sequenced from nasopharyngeal swabs of individual patients to track viral spread. Recently, RT-qPCR of municipal wastewater has been used to quantify the abundance of SARS-CoV-2 in several regions globally. However, metatranscriptomic sequencing of wastewater can be used to profile the viral genetic diversity across infected communities. Here, we sequenced RNA directly from sewage collected by municipal utility districts in the San Francisco Bay Area to generate complete and nearly complete SARS-CoV-2 genomes. The major consensus SARS-CoV-2 genotypes detected in the sewage were identical to clinical genomes from the region. Using a pipeline for single nucleotide variant calling in a metagenomic context, we characterized minor SARS-CoV-2 alleles in the wastewater and detected viral genotypes which were also found within clinical genomes throughout California. Observed wastewater variants were more similar to local California patient-derived genotypes than they were to those from other regions within the United States or globally. Additional variants detected in wastewater have only been identified in genomes from patients sampled outside California, indicating that wastewater sequencing can provide evidence for recent introductions of viral lineages before they are detected by local clinical sequencing. These results demonstrate that epidemiological surveillance through wastewater sequencing can aid in tracking exact viral strains in an epidemic context.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sewage/virology , Base Sequence , COVID-19/epidemiology , California/epidemiology , Environmental Microbiology , Genome, Viral , Genotype , Humans , Metagenome , Metagenomics , Polymorphism, Single Nucleotide , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL